The Growth and Spread of the General Branching Random Walk

نویسنده

  • J. D. BIGGINS
چکیده

A general (Crump-Mode-Jagers) spatial branching process is considered. The asymptotic behaviour of the numbers present at time t in sets of the form ta; 1) is obtained. As a consequence it is shown that, if B t is the position of the rightmost person at time t, B t =t converges to a constant, which can be obtained from the individual reproduction law, almost surely on the survival set of the process. This generalizes the known discrete-time results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

How Fast Does a General Branching Random Walk Spread?

New results on the speed of spread of the one-dimensionalspatial branching process are described. Generalizations to the multitype case and to d dimensions are discussed. The relationship of the results with deterministic theory is also indicated. Finally the theory developed is used to reprove smoothly (and improve slightly) results on certain data-storage algorithms arising in computer science.

متن کامل

Asymptotics for the survival probability in a killed branching random walk

Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we pro...

متن کامل

Asymptotics for the survival probability in a supercritical branching random walk

Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we pro...

متن کامل

A criterion for transience of multidimensional branching random walk in random environment

We develop a criterion for transience for a general model of branching Markov chains. In the case of multi-dimensional branching random walk in random environment (BRWRE) this criterion becomes explicit. In particular, we show that Condition L of Comets and Popov [3] is necessary and sufficient for transience as conjectured. Furthermore, the criterion applies to two important classes of branchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995